Lecture 11 Counterexamples + Bisimulation

Dr. Dave Parker

Department of Computer Science University of Oxford

Overview

Counterexamples

- non-probabilistic model checking
- counterexamples for PCTL + DTMCs
- computing smallest counterexamples

Bisimulation

- bisimulation equivalences: DTMCs, CTMCs
- preservation of logics: PCTL, CSL
- bisimulation minimisation

Non probabilistic counterexamples

- Counterexamples (for non-probabilistic model checking)
 - generated when model checking a (universal) property fails
 - trace through model illustrating why property does not hold
 - major advantage of the model checking approach
 - bug finding vs. verification
- Example:
 - CTL property AG ¬err
 - (or equivalently, $\neg EF err$)
 - ("an error state is never reached")
 - counterexample is a finite trace to a state satisfying err
 - alternatively, this is a witness to the satisfaction of formula EF err

Counterexamples for DTMCs?

- PCTL example: P_{<0.01} [F err]
 - "the probability of reaching an error state is less than 0.01"
 - what is a counterexample for $s \neq P_{<0.01}$ [F err]?
 - not necessarily illustrated by a single trace to an err state
 - in fact, "counterexample" is a set of paths satisfying F err whose combined measure is greater than or equal to 0.01
- Alternative approach to "debugging" seen so far:
 - probabilistic model checker provides actual probabilities
 - e.g. queries of the form $P_{=?}$ [F err]
 - anomalous behaviour identified by examining trends
 - e.g. $P_{=?}$ [$F^{\leq T}$ err] for T=0,...,100
- This lecture: DTMC counterexamples in style of [HK07]
 - also some work done on CTMC/MDP counterexamples

DTMC notation

- DTMC: $D = (S, s_{init}, P, L)$
- Path(s) = set of all infinite paths starting in state s
- $Pr_s : \Sigma_{Path(s)} \rightarrow [0,1] = probability measure over infinite paths$
 - where $\Sigma_{Path(s)}$ is the $\sigma\text{-algebra}$ on Path(s)
 - defined in terms of probabilities for finite paths
- $P_s(\omega) = probability for finite path <math>\omega = ss_1...s_n$

$$- P_{s}(s) = 1$$

- $\mathbf{P}_{s}(\mathbf{s}\mathbf{s}_{1}\ldots\mathbf{s}_{n}) = \mathbf{P}(\mathbf{s},\mathbf{s}_{1}) \cdot \mathbf{P}(\mathbf{s}_{1},\mathbf{s}_{2}) \cdot \ldots \cdot \mathbf{P}(\mathbf{s}_{n-1},\mathbf{s}_{n})$
- extend notation to sets: $P_s(C)$ for set of finite paths C
- **P**_s extends uniquely to Pr_s
- Path(s, ψ) = { $\omega \in Path(s) \mid \omega \vDash \psi$ }

 $- Prob(s, \psi) = Pr_s(Path(s, \psi))$

• $Path_{fin}(s, \psi) = set of finite paths from s satisfying \psi$

DP/Probabilistic Model Checking, Michaelmas 2011

Counterexamples for DTMCs

- Consider PCTL properties of the form:
 - $\ P_{\leq p}$ [$\Phi_1 \ U^{\leq k} \ \Phi_2$], where $k \in \mathbb{N} \ \cup \{\infty\}$
 - i.e. bounded or unbounded until formulae with closed upper probability bounds
- Refutation:
 - $\mathbf{s} \not\models \mathbf{P}_{\leq p} \left[\mathbf{\Phi}_1 \ \mathbf{U}^{\leq k} \ \mathbf{\Phi}_2 \right]$
 - $\, \Leftrightarrow \, Pr_{s}(Path(s, \, \Phi_{1} \, \, U^{\leq k} \, \Phi_{2})) > p$
 - i.e. total probability mass of $\Phi_1 U^{\leq k} \Phi_2$ paths exceeds p
- Since the property is an until formula
 - this is evidenced by a set of finite paths

Counterexamples for DTMCs

- A counterexample for $P_{\leq p}$ [$\Phi_1 U^{\leq k} \Phi_2$] in state s is:
 - a set C of finite paths such that $C \subseteq \text{Path}_{\text{fin}}(s,\,\psi)$ and $\textbf{P}_{s}(C) > p$

- Example
 - Consider the PCTL formula:
 - $P_{\leq 0.3}$ [F a]
 - This is not satisfied in s_0
 - Prob(s₀, F a) = 1/4 + 1/8 + 1/16 + ... = 1/2
 - A counterexample: $C = \{ s_0 s_2, s_0 s_0 s_2 \}$
 - $P_{s0}(C) = 1/4 + (1/2)(1/4) = 3/8 = 0.375$

Finiteness of counterexamples

• There is always a finite counterexample for:

$$- \mathbf{s} \not\models \mathbf{P}_{\leq p} \left[\mathbf{\Phi}_1 \ \mathbf{U}^{\leq k} \ \mathbf{\Phi}_2 \right]$$

- On the other hand, consider this DTMC:
 - and the PCTL formula:
 - $P_{<1/2} [Fa]$

-
$$Prob(s_0, F a) = 1/4 + 1/8 + 1/16 + ...$$

= 1/2

 $- s_0 \not\models P_{<1/2} [Fa]$

- counterexample would require infinite set of paths
- $\; \{ \; (s_0)^i s_2 \; \}_{i \in \mathbb{N}}$

Counterexamples for DTMCs

- Aim: counterexamples should be succinct, comprehensible
- Set of all counterexamples:
 - $CX_p(s,\psi)$ = set of all counterexamples for $P_{\leq p}\left[\psi\right]$ in state s
- Minimal counterexample
 - counterexample C with $|C| \le |C'|$ for all $C' \in CX_p(s,\psi)$
- "Smallest" counterexample
 - minimal counterexample C with $P(C) \ge P(C')$ for all minimal C' $\in CX_p(s,\psi)$
 - reduces to finding...
- Strongest (most probable) evidence
 - finite path ω in Path_{fin}(s, ψ) such that $P(\omega) \ge P(\omega')$ for all $\omega' \in Path_{fin}(s, \psi)$
 - i.e. contributes most to violation of PCTL formula

Example

- PCTL formula: $P_{\leq 1/2}$ [F b]
 - $\hspace{0.1 cm} s_{0} \hspace{0.1 cm} \nvDash \hspace{0.1 cm} P_{\leq 1/2} \hspace{0.1 cm} [\hspace{0.1 cm} F \hspace{0.1 cm} b \hspace{0.1 cm}] \hspace{0.1 cm}$
 - since Prob(s₀, F b) = 0.9

• Counterexamples:

$$- C_{1} = \{ s_{0}s_{1}s_{2}, s_{0}s_{1}s_{4}s_{2}, s_{0}s_{1}s_{4}s_{5}, s_{0}s_{4}s_{2} \}
\cdot P_{s0}(C_{1}) = 0.2 + 0.2 + 0.12 + 0.15 = 0.67 \quad (not minimal)
- C_{2} = \{ s_{0}s_{1}s_{2}, s_{0}s_{1}s_{4}s_{2}, s_{0}s_{1}s_{4}s_{5} \}
\cdot P_{s0}(C_{2}) = 0.2 + 0.2 + 0.12 = 0.52 \quad (not "smallest")
- C_{3} = \{ s_{0}s_{1}s_{2}, s_{0}s_{1}s_{4}s_{2}, s_{0}s_{4}s_{2} \}
\cdot P_{s0}(C_{3}) = 0.2 + 0.2 + 0.15 = 0.55 \quad ("smallest")$$

Weighted digraphs

- A weighted directed graph is a tuple G = (V, E, w) where:
 - V is a set of vertices
 - $E \subseteq V \times V$ is a set of edges
 - $w : E \rightarrow \mathbb{R}_{\geq 0}$ is a weight function
- + Finite path ω in G
 - is a sequence of vertices $v_0v_1v_2...v_n$ such that $(v_i,v_{i+1}) \in E \forall i \ge 0$
 - the distance of $\omega = v_0 v_1 v_2 \dots v_n$ is: $\Sigma_{i=0\dots n-1} w(v_i, v_{i+1})$
- Shortest path problem
 - given a weighted digraph, find a path between two vertices v_1 and v_2 with the smallest distance
 - i.e. a path ω s.t. $d(\omega) \leq d(\omega')$ for all other such paths ω'

Finding strongest evidences

- Reduction to graph problem...
- Step 1: Adapt the DTMC
 - make states satisfying $\neg \Phi_1 \land \neg \Phi_2$ absorbing
 - $\cdot\,$ (i.e. replace all outgoing transitions with a single self-loop)
 - add an extra state t and replace all transitions from any Φ_2 state with a single transition to t (with probability 1)
- Step 2: Convert new DTMC into a weighted digraph
 - for the (adapted) DTMC $D = (S, s_{init}, P, L)$:
 - corresponding graph is $G_D = (V, E, w)$ where:
 - V = S and E = { (s,s') \in S \times S | P(s,s')>0 }
 - w(s,s') = log(1/P(s,s'))
- Key idea: for any two paths ω and ω ' in D (and in G_D)
 - $\mathbf{P}_{s}(\omega') \ge \mathbf{P}_{s}(\omega)$ if and only if $d(\omega') \le d(\omega)$

Example...

• PCTL formula: $P_{\leq 1/2}$ [F b]

DP/Probabilistic Model Checking, Michaelmas 2011

Finding strongest evidences

- To find strongest evidence in DTMC D
 - analyse corresponding digraph
- + For unbounded until formula $P_{\leq p}$ [$\Phi_1 \cup \Phi_2$]
 - solve shortest path problem in digraph (target t)
 - polynomial time algorithms exist
 - $\cdot\,$ e.g. Dijsktra's algorithm can be implemented in O(|E|+|V| \cdot log|V|)
- + For bounded until formula $P_{\leq p}$ [$\Phi_1 \; U^{\leq k} \; \Phi_2$]
 - solve special case of the constrained shortest path problem
 - also solvable in polynomial time
- Generation of smallest counterexamples
 - based on computation of k shortest paths
 - k can be computed on the fly

Other cases

- Lower bounds on probabilities
 - $\text{ i.e. s} \not\models P_{\geq p} \left[\ \Phi_1 \ U^{\leq k} \ \Phi_2 \ \right]$
 - negate until formula to reverse probability bound
 - solvable with BSCC computation + probabilistic reachability
 - for details, see [HK07]
- Continuous-time Markov chains
 - these techniques can be extended to CTMCs and CSL [HK07b]
 - naïve approach: apply DTMC techniques to uniformised DTMC
 - modifications required to get smaller counterexamples
 - another possibility: directed search based techniques [AHL05]

Bisimulation

- Identifies models with the same branching structure
 - i.e. the same stepwise behaviour
 - each model can simulate the actions of the other
 - guarantees that models satisfy many of the same properties
- Uses of bisimulation:
 - show equivalence between a model and its specification
 - state space reduction: bisimulation minimisation
- Formally, bisimulation is an equivalence relation over states
 - bisimilar states must have identical labelling and identical stepwise behaviour

Equivalence relations

• Let R be a relation over some set S

- i.e. $R \subseteq S \times S$

- we write $s_1 R s_2$ as shorthand for $(s_1, s_2) \in R$

- R is an equivalence relation iff:
 - R is reflexive, i.e. s R s
 - R is symmetric, i.e. if $s_1 R s_2$ then $s_2 R s_1$
 - R is transitive, i.e. if $s_1 R s_2$ and $s_2 R s_3$ then $s_1 R s_3$
- R partitions S:
 - equivalence classes: $[s]_R = \{ s' \in S \mid s' R s \}$
 - the quotient of S under R is denoted $S/R = \{ [s]_R | s \in S \}$

Bisimulation on DTMCs

- Consider a DTMC D = (S,s_{init},P,L)
- Some notation:

 $- \ P(s,T) = \Sigma_{s' \in T} \ P(s,s') \ \text{for} \ T \subseteq S$

- An equivalence relation R on S is a probabilistic bisimulation on D if and only if for all s₁ R s₂:
 - $L(s_1) = L(s_2)$
 - $P(s_1, T) = P(s_2, T)$ for all $T \in S/R$ (i.e. for all equivalence classes of R)
- States s₁ and s₂ are bisimulation-equivalent (or bisimilar)
 - if there exists a probabilistic bisimulation R on D with $s_1 R s_2$
 - denoted $s_1 \sim s_2$

Simple example

- Bisimulation relation ~
- Quotient of S under ~
 { {s₁}, {u₁, u₂}, {v₁, v₂} }
- Bisimilar states:
 - $u_1 \sim u_2$ $v_1 \sim v_2$

Bisimulation on DTMCs

- Bisimulation between DTMCs D₁ and D₂
 - D₁ ~ D₂ if they have bisimilar initial states
- Formally:
 - state labellings for D_1 and D_2 over same set of atomic prop.s
 - bisimulation relation is over disjoint union of D_1 and D_2

DP/Probabilistic Model Checking, Michaelmas 2011

Simple example

• Bisimilar states:

Bisimilar DTMCs: $D_1 \sim D_2$

- u₁ ~ u₂ ~ u
- $v_1 \sim v_2 \sim v$
- $-s_1 \sim s$

Quotient DTMC

• For a DTMC D = (S, s_{init} , P,L) and probabilistic bisimulation ~

Bisimulation and PCTL

- Probabilistic bisimulation preserves all PCTL formulae
- For all states s and s':

s ~ s'

$$\Leftrightarrow$$
for all PCTL formulae Φ , s $\vDash \Phi$ if and only if s' $\vDash \Phi$

- Note also:
 - every pair of non-bisimilar states can be distinguished with some PCTL formula
 - \sim is the coarsest relation with this property
 - in fact, bisimulation also preserves all PCTL* formulae

CTMC bisimulation

- Check equivalence of rates, not probabilities...
- An equivalence relation R on S is a probabilistic bisimulation on CTMC C=(S,s_{init},R,L) if and only if for all s₁ R s₂:

$$- L(s_1) = L(s_2)$$

- $\mathbf{R}(\mathbf{s}_1, \mathbf{T}) = \mathbf{R}(\mathbf{s}_2, \mathbf{T})$ for all classes T in S/R
- Alternatively, check:
 - $L(s_1) = L(s_2), P^{emb(C)}(s_1, T) = P^{emb(C)}(s_2, T), E(s_1) = E(s_2)$
- Bisimulation on CTMCs preserves CSL
 - (see [BHHK03] and also [DP03])

Bisimulation minimisation

- More efficient to perform PCTL/CSL model checking on the quotient DTMC/CTMC
 - assuming quotient model can be constructed efficiently
 - (see [KKZJ07] for experimental results on this)
- Bisimulation minimisation
 - algorithm to construct quotient model
 - based on partition refinement
 - repeated splitting of an initially coarse partition
 - final partition is coarsest bisimulation wrt. initial partition
 - (optimisations/variants possible by changing initial partition)
 - complexity: $O(|\mathbf{P}| \cdot \log |S| + |A\mathbf{P}| \cdot |S|)$ [DHS'03]
 - · assuming suitable data structure used (splay trees)

Bisimulation minimisation

- 1. Start with initial partition
 - $say \Pi = \{ \{ s \in S \mid L(s) = lab \} \mid lab \in 2^{AP} \}$
- 2. Find a splitter $T \in \Pi$ for some block $B \in \Pi$
 - a splitter T is a block such that probability of going to T differs for some states in block B
- i.e. ∃s,s'∈B . P(s,T) ≠ P(s',T)
 replace P with R for CTMCs
 Split B into sub-blocks
 - such that P(s,T) is the same for all states in each sub-block
- 4. Repeat steps 2/3 until no more splitters exist
 - i.e. no change to partition Π

CTMC example

• Consider model checking P_{-p} [$F^{[0,t]}$ a] on this CTMC:

Minimisation:

 $\Pi_{0:} B_{1} = \{s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\}, B_{2} = \{s_{6}\}$ $B_{2} \text{ is a splitter for } B_{1}$ (since e.g. $R(s_{1}, B_{2}) = 0 \neq 2 = R(s_{2}, B_{2})$) $\Pi_{1}: B_{1} = \{s_{0}, s_{1}, s_{4}, s_{5}\}, B_{2} = \{s_{6}\}, B_{3} = \{s_{2}, s_{3}\}$ $B_{3} \text{ is a splitter for } B_{1}$ (since e.g. $R(s_{1}, B_{3}) = 0 \neq 4 = R(s_{0}, B_{3})$) $\Pi_{2}: B_{1} = \{s_{1}, s_{5}\}, B_{2} = \{s_{6}\}, B_{3} = \{s_{2}, s_{3}\}, B_{4} = \{s_{0}, s_{4}\}$ No more splitters...

$$S/\sim = \{ \{s_1, s_5\}, \{s_6\}, \{s_2, s_3\}, \{s_0, s_4\} \}$$

CTMC example...

Prob^C(s₀, $F^{[0,t]}a$) = Prob^{C/~}({s₀,s₄}, $F^{[0,t]}a$)

DP/Probabilistic Model Checking, Michaelmas 2011

Summing up...

- Counterexamples
 - essential ingredient of non-probabilistic model checking
 - counterexamples for PCTL + DTMCs
 - . finite set of paths showing $\nvDash P_{\leq p} [\Phi_1 U^{\leq k} \Phi_2]$
 - computing smallest counterexamples
 - reduction to well-known graph problems

• Bisimulation

- relates states/Markov chains with identical labelling and identical stepwise behaviour
- preserves PCTL, CSL, ...
- bisimulation minimisation: automated reduction to quotient model